Crystal Structure and Asymmetric Conformation of a K+ Channel RCK Domain
نویسندگان
چکیده
منابع مشابه
Structure and function of multiple Ca2+-binding sites in a K+ channel regulator of K+ conductance (RCK) domain.
Regulator of K(+) conductance (RCK) domains control the activity of a variety of K(+) transporters and channels, including the human large conductance Ca(2+)-activated K(+) channel that is important for blood pressure regulation and control of neuronal firing, and MthK, a prokaryotic Ca(2+)-gated K(+) channel that has yielded structural insight toward mechanisms of RCK domain-controlled channel...
متن کاملCrystal structure of a Ba(2+)-bound gating ring reveals elementary steps in RCK domain activation.
RCK domains control activity of a variety of K(+) channels and transporters through binding of cytoplasmic ligands. To gain insight toward mechanisms of RCK domain activation, we solved the structure of the RCK domain from the Ca(2+)-gated K(+) channel, MthK, bound with Ba(2+), at 3.1 Å resolution. The Ba(2+)-bound RCK domain was assembled as an octameric gating ring, as observed in structures ...
متن کاملStructure of the RCK Domain from the E. coli K+ Channel and Demonstration of Its Presence in the Human BK Channel
The intracellular C-terminal domain structure of a six-transmembrane K+ channel from Escherichia coli has been solved by X-ray crystallography at 2.4 A resolution. The structure is representative of a broad class of domains/proteins that regulate the conductance of K+ (here referred to as RCK domains) in prokaryotic K+ transporters and K+ channels. The RCK domain has a Rossmann-fold topology wi...
متن کاملCrystal Structure of Nonaaquayttrium(III) Bromate at 100 K
The structure of the nonaaquayttrium (III) bromate, [Y(H2O)9](BrO3)3, at low temperature (100 K) has been studied by means of single-crystal X-ray diffraction. Crystallography shows a hexagonal unit cell, space group P63/mmc (No. 194) with Z = 2, a = b = 11.7104(11) Å, c = 6.6259(5) Å and V = 786.90(12) Å3 at 100 K. The hydra...
متن کاملCrystal structure of a signal recognition particle Alu domain in the elongation arrest conformation.
The signal recognition particle (SRP) is a conserved ribonucleoprotein particle that targets membrane and secreted proteins to translocation channels in membranes. In eukaryotes, the Alu domain, which comprises the 5' and 3' extremities of the SRP RNA bound to the SRP9/14 heterodimer, is thought to interact with the ribosome to pause translation elongation during membrane docking. We present th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2016
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2015.11.1575